PREDICTING MICROSTRUCTURE-SENSITIVE FRACTURE BEHAVIOR IN AM IN625 USING A DAMAGE-ENABLED ELASTO-VISCOPLASTIC FFT FRAMEWORK

In this work, we use a large-strain elasto-viscoplastic fast Fourier transform (LS-EVPFFT) code enhanced with a continuum damage mechanics model to predict failure response of a subcontinuum mesoscale tensile specimen in the context of the National Institute of Standards and Technology (NIST) 2022 Additive Manufacturing Benchmark (AM-Bench) Challenge. In the Challenge, participants were provided with data from X-ray computed tomography and electron backscattered diffraction (EBSD) for an AM IN625 sample and asked to predict stress and strain response and locations of necking and fracture. To account for uncertainty in the subsurface microstructure, we instantiated 10 semi-synthetic microstructures using a Potts model in a modified version of the open-source software SPPARKS. While all 10 models maintain identical surface grain structure, surface roughness, and internal porosity, their subsurface grain structures vary due to randomness in the microstructure-generation procedure. Results from the blind predictions using the LS-EVPFFT framework are compared to the experimental results. Lessons learned are discussed.
EXTENDED ABSTRACT

ON THE MECHANISTIC ORIGINS OF THE INCREASED HYDROGEN ENVIRONMENT-ASSISTED CRACKING SUSCEPTIBILITY OF AM 17-4PH STEEL

Literature results indicate that the hydrogen environment-assisted cracking susceptibility of additively manufactured (AM) 17-4PH steel fabricated using laser powder bed fusion is increased relative to comparable wrought 17-4PH. This study seeks to understand the mechanistic origins of this increased susceptibility through a detailed examination of near-crack deformation, alloy microstructure, and hydrogen-metal interactions. Based on these data, it is determined that sub-micrometer porosity present in the AM material provides a primary contribution to the degradation in HEAC resistance. The mechanistic basis for the influence of porosity is considered in the context of an existing model for HEAC. The implications of these findings on the broader AM community are then discussed.
EXTENDED ABSTRACT

EFFECTS OF PROCESS CONDITIONS AND MICROSTRUCTURE ON THE FATIGUE AND FRACTURE OF AM IN718 UNDER

Additive manufacturing (AM) dramatically increases the design freedom for difficult to machine alloys like IN718. For turbine applications for aerospace and energy, additional freedom in component design allows for lightweighting and better cooling efficiency. This study seeks to elucidate and model the effects of porous and crystallographic microstructural elements on the fatigue life and fracture behavior of AM IN718 through X-ray computed tomography (XCT), scanning electron microscopy (SEM), and electron backscatter diffraction (EBSD) of specimens tested under high temperature high cycle fatigue.
EXTENDED ABSTRACT

ENVIRONMENTAL CRACKING OF ADDITIVELY MANUFACTURED 316L STAINLESS STEEL

The widespread use of 316L stainless steel for applications requiring increased corrosion resistance has motivated interest in leveraging additive manufacturing (AM) for in-service production of replacement components. However, while a large number of studies have examined the effect of AM processing parameters on yield strength and fracture toughness, detailed assessments of the environment-assisted cracking (EAC) susceptibility of AM alloys are limited. The objective of this study is to compare the corrosion fatigue and stress corrosion cracking behavior of AM and wrought 316L with similar yield strengths in aqueous chloride environments at temperatures ranging from 293 to 358 K. As built material will be compared with cold drawn bar, and hot isostatic pressed (HIP) material will be compared with plate in the annealed state to minimize the effect of different yield strength between material form. Differences in microstructure and build-introduced stresses are correlated with EAC performance, thereby providing mechanistic insights into the factors governing EAC behavior of AM 316L. In particular, the influence of build direction, residual stresses, texture, and compositional heterogeneities are all assessed.
EXTENDED ABSTRACT

MICROSTRUCTURE-PROPERTY PREDICTIONS AND MULTISTAGE FATIGUE LIFE PREDICTION OF HOLE RESTORATION COUPONS USING AFSD

Military aircrafts operate frequently in a highly corrosive environment. Corrosion in aluminum aircraft structures with holes and adhesive-bonded lap joints promotes multi-site cracking, which can lead to failure of major aircraft components. To expedite and facilitate the corrosion repair process, an emerging solid-state process, additive friction stir deposition (i.e. AFSD) is applied for the hole restoration followed by the fatigue performance evaluation. Because of the friction stir induced material flow of the deposited and substrate materials, the resulting microstructure and its associated properties are position-dependent. The weak metallurgical bond at the bottom of the repaired hole coupon can promote a crack initiation under cyclic loading and the total life consists of crack initiation, short crack growth, and long crack propagation. This paper describes the use of a multiphysics modeling approach to characterize the process-driven properties evolution and to evaluate the effects of a kissing bond on the total life of hole restoration coupons.
EXTENDED ABSTRACT

DEFECT STATISTICS AND FRACTURE INITIATION MECHANISMS IN AS-BUILT AND HEAT-TREATED ADDITIVE MANUFACTURED 17-4 STEEL

Defects in additively manufactured metals are detrimental to the manufactured components. Due to the rapid melting and solidification during printing, a non-homogeneous microstructure is typical in the metal specimens additively manufactured using laser powder bed fusion. The present study aims to understand the fracture initiation mechanism in as-built and heat-treated additively manufactured 17-4 stainless steel. To this end, 17-4 stainless steel unnotched and notched specimens additively manufactured using direct metal laser sintering were used. Solution annealing and subsequent aging were performed as the post-heat treatment of the stainless steel test specimens. Postmortem fractography using scanning electron microscopy (SEM) of the fracture surface and micro-computed tomography (micro-CT) of the test specimens before and after fracture revealed that the large coalesced microvoids with sizes greater than 120 µm significantly influence the ductile fracture initiation in the additively manufactured steel specimens.
EXTENDED ABSTRACT

SHORT CRACK GROWTH BEHAVIOR OF IN718 UNDER HIGH TEMPERATURE CONDITIONS IN CONSIDERATION OF PLASTICITY INDUCED CRACK CLOSURE

The behavior of short fatigue cracks under high temperature conditions is of significant importance for lifetime predictions and defect assessment of components in aircraft and gas turbine applications. The cyclic R(esistance) curve provides a possibility to describe phenomenologically the crack growth behavior below the long crack threshold. Within this paper experimentally determined cyclic R-curves of the nickel based alloy IN718 for varying load ratios (Rσ = -1, 0 and 0.5) at 650 °C are compared to each other. Furthermore, an approach supporting a mechanism-based understanding of the cyclic R-curves, taking plasticity induced crack closure (PICC) into account, is developed. Finite element analysis is used to estimate the amount of PICC in the short crack regime. For a systematic investigation of the impact of different ductility properties on short crack behavior, results from an additively and two conventionally (cast and wrought) manufactured material variants of IN718 are part of the investigations.
EXTENDED ABSTRACT

RESISTANCE TO FRACTURE AND FATIGUE IN ADDITIVELY MANUFACTURED ALLOYS [Keynote]

Ti-6Al-4V fabricated by the laser powder bed-fusion (LPBF) process consists of metastable α’ microstructure and columnar prior β grain (PBGs) mesostructures. These micro-and mesostructures adversely affect fracture toughness (KIc) in as-built conditions. After an optimized post-processing heat-treatment, the KIc of LPBF Ti-6Al-4V improves by ⁓104%; however, the anisotropy in KIc persists due to preferential crack growth along the columnar PBGs. In another LPBF fabricated β Ti-alloy, Ti41Nb, the crack tortuosity from the mesostructures formed by compositional segregation improves the KIc by ⁓80%. These results demonstrate extrinsic toughening in AM alloys. While such toughening from mesostructures enhances AM alloys’ reliability, the processing-induced defects present in them, i.e., porosity, significantly reduce their high cycle fatigue (HCF) resistance. Therefore, in the second part of the present study, the HCF life of 316L and 17-4 PH steels produced by the binder jet printing process was investigated. The hot isostatic pressing (HIP) was employed on these steels to improve their HCF life. The HCF life of HIPed 17-4 PH steel is comparable to their conventionally manufactured counterparts; however, in 316L, HIP fails to improve fatigue life. Based on these findings, the microstructural origin for fracture and fatigue resistance in AM alloys are discussed.
EXTENDED ABSTRACT

MICROSTRUCTURALLY INFORMED HIGH-VELOCITY IMPACT EXPERIMENTATION ON ADDITIVELY-MANUFACTURED METALLIC MATERIALS

This work presents a flexible experimental setup to study dynamic fragmentation of additively-manufactured metallic materials using two different configurations: (i) rapid axial penetration of thin-walled tubes, and (ii) rapid radial expansion of rings. In the first approach, the experiment consists of a light-gas gun that fires a conical nosed cylindrical projectile that impacts axially on a thin-walled cylindrical tube fabricated by 3D printing. The diameter of the cylindrical part of the projectile is approximately twice greater than the inner diameter of the cylindrical target, which is expanded as the projectile moves forward, eventually breaking into fragments. In the second approach, using a similar technique, a ring is inserted over a high-ductility tube, which expands after penetration by the conical projectile, pushing the metallic ring radially outwards, ultimately breaking into multiple fragments. The experiments have been performed for impact velocities ranging from 180 m/s to 390 m/s. A salient feature of this work is that we have characterized by X-ray tomography the porous microstructure of selected specimens before and after testing. Moreover, two high-speed cameras have been used to film the experiments and thus to obtain time-resolved information on the mechanics of formation and propagation of fractures.
EXTENDED ABSTRACT

VERY HIGH-CYCLE FATIGUE BEHAVIOR OF ADDITIVELY MANUFACTURED TI-6AL-4V USING ULTRASONIC FATIGUE MACHINE AND SELF-HEATING TESTING.

Accelerated characterization of high-cycle fatigue properties is necessary in order to enable the optimization of parameters of additive manufacturing processes such as LPBF (Laser Powder Bed Fusion). Therefore, two accelerated characterization methods are applied and compared on Ti-6Al-4V samples produced using the LPBF process. The first method uses an ultrasonic fatigue machine and the second one determines the fatigue limit using self-heating testing. To study the interactions between the material and the accelerated testing methods, fatigue tests are carried out on different grades of Ti-6Al-4V-LPBF differing by their microstructure or their porosity. Three grades have the same microstructure but different porosity levels and three grades have different microstructures with the same porosity. Both properties showed a strong impact on VHCF strength and affected the mechanisms at fatigue crack initiation.
EXTENDED ABSTRACT