INFLUENCE OF THE CONTOUR PARAMETER IN MICROSTRUCTURE DUALITY AND FRACTURE INITIATION IN NON-COMBUSTIBLE MAGNESIUM ALLOYS FABRICATED BY LASER POWDER BED FUSION

Non-combustible Mg alloy components fabricated by laser powder bed fusion in as-built conditions have an average ultimate tensile strength (UTS) of 320 MPa, a significantly larger value than its casting counterparts, which present an average UTS of 200 MPa. In addition, it was determined that stable crack extension always starts at the outer surface due to the coarsened microstructure regions present in the area. Therefore, this paper will use fracture mechanics to predict the UTS value by determining the size of the coarsened microstructure region and considering it as a surface crack with the √area parameter. Then, by using a fixed fracture toughness value, the UTS will be predicted. Furthermore, a processing parameter known as contour, which is used for remelting the outer surface of the specimen, can also smoothen the microstructure and potentially increase the UTS value. Results showed that the √area of the surface crack responsible for fracture was 730 μm for the no-contour specimen and 630 μm for a contour specimen. Subsequently, using Murakami’s theory, the predicted UTS is 320 MPa and 345 MPa respectively. Finally, tensile testing was performed to confirm the prediction, showing similar results with an average deviation of 2.9%.
EXTENDED ABSTRACT

FAILURE CHARACTERIZATION IN 17-4PH STAINLESS STEEL ACROSS MULTIPLE MANUFACTURING METHODS

Accurate models of additively manufactured (AM) materials require extensive mechanical testing for proper calibration and verification/validation. The process-structure-property relationships in 17-4PH stainless steel from multiple manufacturing modes were examined via mechanical testing across several strain rates and post-mortem characterizations of the fracture surfaces and microstructure. Under all manufacturing modes and testing conditions, optical and scanning electron microscopy showed ductile failure characteristics. Higher porosity concentration (determined by density measurement) resulted in lower ultimate strength in cast samples; the pores often acted as crack initiation points. Strain-rate dependence and failure modes were also affected by process-dependent anisotropy in the microstructure, which was quantified through electron backscatter diffraction (EBSD) imaging. This data will be used to inform models of failure in the 17-4PH for multiple manufacturing forms.
EXTENDED ABSTRACT