NOVEL BENDING BASED METHODS FOR INTERFACE FRACTURE ENERGY MEASUREMENT OF THERMAL SPRAY COATINGS

A novel modified cantilever beam method and modified clamped beam method with DIC (Digital Image Correlation) is developed to measure the interface fracture energy of ceramic/metal interface. The experimental execution for these geometries is demonstrated on an Air Plasma Sprayed (APS) YSZ coating on a steel substrate. For modified cantilever method, a pre-crack is first made along the interface, followed by the interface test. These methods use the same geometry for both pre-cracking and testing. The value of interface fracture energy is obtained as the critical energy release rate, Gc, using numerically computed values of J-integral. The results of both the geometries are compared.
EXTENDED ABSTRACT

LOCAL APPROACH TO CORRELATE CLEAVAGE FRACTURE TOUGHNESS WITH MICROSTRUCTURE OF STEEL

This study proposes a new fracture model to correlate cleavage fracture toughness with microstructure of steel having bainitic structure with/without M-A constituent based on the Local Approach. In this model, a new fracture parameter to predict fracture toughness is derived through the proposal of microstructural characteristic of the material to control fracture toughness and on the basis of weakest link theory assumed Griffith crack. The material properties required for applying the fracture model are microstructural properties, those are 1) representative volume and 2) maximum size distribution of micro-crack nuclei, 3) mechanical properties and 4) effective energy release rate of matrix material. The applicability of the theoretical fracture model is demonstrated by experiments for upper bainitic steel with different microstructural morphology. This model can correlate materials properties which are microstructural and mechanical properties with fracture toughness.
EXTENDED ABSTRACT

MACRO CLEAVAGE ENERGY TO MICRO BOND BREAKING MECHANISMS- SHORTER IS TOUGHER

Fracture of brittle solids is ultimately executed by atomistic-scale, discrete, and ultrafast bond-breaking mechanisms along the crack path. Here, we show new fracture behavior and properties of brittle materials, based on macroscopic fracture cleavage experiments of silicon crystal specimens and atomistic-scale semi-empirical model for bond-breaking mechanisms along the curved crack front, to relate micro to macro in fracture.
EXTENDED ABSTRACT

REVISITING LOCAL APPROACHES TO CLEAVAGE FRACTURE: AN OVERVIEW OF PROGRESS AND CHALLENGES FOR ENGINEERING-LEVEL APPLICATIONS

This paper provides an overview of recent progress in probabilistic modeling of cleavage fracture phrased in terms of a local approach to fracture (LAF) and the Weibull stress concept. Emphasis is placed on the incorporation of plastic strain effects into the probabilistic framework by approaching the strong influence of constraint variations on (macroscopic) cleavage fracture toughness in terms of the number of eligible Griffith-like microcracks which effectively control unstable crack propagation by cleavage. Some recent results based on a modified Weibull stress model to predict specimen geometry effects on Jc-values for pressure vessel grade steels are summarized in connection with an engineering procedure to calibrate the Weibull stress parameters. These results are compared against corresponding fracture toughness predictions derived from application of the standard Beremin model. Finally, the robustness of LAF methodologies, including specifically the Weibull stress approach, is critically examined along with a discussion of key issues and challenges related to engineering applications in fracture assessments of structural components.
EXTENDED ABSTRACT

EVOLUTION OF GRIFFITH’S CONCEPT FROM 1921 TO THE PRESENT

The presentation will briefly review the history of the development of fracture mechanics from 1921 to the present, including the evolution of its basic concept. Arguments will be made that Griffith’s basic concept, properly implemented in the context of modern non-equilibrium thermodynamics, remains valid.
EXTENDED ABSTRACT

GRIFFITH FRACTURE THEORY FOR THE SIZE EFFECT ON STRENGTH OF BRITTLE MATERIALS

The scale- or the size-dependence of mechanical strength in many brittle materials appears to follow a ‘universal law,’ of the form: strength proportional as:L^-n or V^-n, where n is a number, L is the length and V is the volume of the specimen or structure. Broadly known as the “size-effect” in geology, civil engineering, mining and materials science, this behavior determines the strength of large structures such as ice sheets, rock formations, coal pillars in mines and concrete beams and columns in civil infrastructure. As of now, there is no reliable scientific basis or theory to explain the size effect or for determining a reliable value of ‘n’. This has been the missing link in strength of materials for nearly a century since the Griffith’s crack theory Here, we show that the change in net-section strain energy, due an initial crack in a structure, and its dissipation within a crack layer of finite thickness, leads to the necessary and sufficient physical basis to explain the size-dependence of strength as L^-0.5. Further, size-independence of strength is explained simultaneously when the crack layer volume approaches the specimen volume.
EXTENDED ABSTRACT