PROBABILISTIC FRACTURE MECHANICS FOR HEAVY-DUTY GAS TURBINE ROTOR OPERATIONS IN THE ENERGY SECTOR [Keynote]

We present probabilistic fracture mechanics methodologies and applications from an energy industry perspective. Topics include probabilistic fracture mechanics for heavy-duty rotating equipment, including gas turbine rotor disks, probabilistic modeling of forging flaw crack nucleation, modeling of non-destructive inspection capabilities, and probabilistic crack propagation from low-cycle fatigue-initiated cracks. We will present relevant new design and service applications in which reliable risk quantification and minimization are paramount. We will also illustrate how the developed Monte Carlo scheme harnesses the power of high-performance computing, including Graphics Processing Unit (GPU) utilization, to enable a fast computational turn-around time for the millions of individual fatigue crack growth calculations needed to resolve the low-risk requirements.
The presented methods pave the way for a fast and reliable robust risk quantification of power plant components and systems, including probabilistic digital twins, and support power plants’ efficient, reliable operation. These methods are essential for the energy transition, including intermittent renewable energy sources such as wind turbines and photovoltaic systems, where the start-up flexibility of gas turbines is a crucial requirement.
EXTENDED ABSTRACT

A SOFTWARE FRAMEWORK FOR PROBABILISTIC FATIGUE CRACK GROWTH ANALYSIS OF METALLIC COMPONENTS [Keynote]

A comprehensive software framework has been developed for probabilistic fatigue crack growth (FCG) analysis of safety-critical metallic components. The framework has been implemented in a computer code called DARWIN® (Design Assessment of Reliability With INspection). DARWIN determines the probability of fracture for a component as a function of operating cycles, with and without inspection, by integrating finite element (FE) geometries, stress, and temperature analysis results; fracture mechanics models; material anomaly data; probability of anomaly detection; and uncertain inspection schedules with a user-friendly graphical user interface (GUI). The framework can accommodate anomalies occurring anywhere in the volume of the component (such as material voids or inclusions) or anomalies occurring only on the surface of the component (such as manufacturing or maintenance damage).
EXTENDED ABSTRACT

PROLOCA 7.1 A PROBABILISTIC FRAMEWORK FOR FATIGUE ANALYSIS OF ALUMINUM AND WELD STEEL STRUCTURES [Keynote]

PROLOCA 7.1 is a probabilistic fracture mechanics (PFM) cods developed for the analysis of damage initiation and growth up to the point of structural failure. The PROLOCA (PRObability of Loss Of Coolant Accident) code was formulated to address nuclear piping and was based on past probabilistic analyses of fatigue in aircraft. These methods were integrated into a code, PROLOCA 2.0 originally developed under NRC contract [1], which was developed for nuclear piping analyses. Since that time, PROLOCA was continually improved under contract to an international team of regulators and operators. In this paper we examine some of the key differences between PROLOCA and other frameworks for fatigue analyses. Examples of the application of PROLOCA to dissimilar metal welds and aircraft damage tolerance are given to demonstrate the extremely low risk of failure with and without inspections and leak detection
EXTENDED ABSTRACT

PROBABILISTIC STRUCTURAL INTEGRITY ASSESSMENT OF WELDED JOINTS [Keynote]

The fatigue assessment of welded joints requires several input data, which can be subdivided into three categories: geometry, material and loading. The number of input data depends essentially on the complexity of the models employed and on the level of accuracy of the analysis. It is common practice to use safety factors in design to account for the scatter of the input parameters. Nevertheless, overly-conservative factors lead often to unrealistic estimations of fatigue life. This work presents a fracture mechanics-based model for the structural integrity assessment of welded joints under constant amplitude fatigue loading, in which the local geometry at the weld toe and the fatigue crack growth properties are considered statistically distributed. The approach is validated against a large number of experimental data.
EXTENDED ABSTRACT

PROBABILISTIC CRITICAL FLAW SIZE ASSESSMENTS IN THE CIRCUMFERENTIAL WELDS OF LAYERED PRESSURE VESSELS [Keynote]

The National Aeronautics and Space Administration (NASA) operates approximately 300 aging, carbon steel, layered pressure vessels (LPVs) that were designed and manufactured prior to ASME Boiler and Pressure Vessel (B&PV) code requirements. Fitness-for-service assessments and traditional evaluations of these non-code vessels is a challenge due to unique uncertainties that are not present in code vessels, such as missing construction records and the use of proprietary materials in construction. Furthermore, many of the steels used in these non-code vessels are at a risk of cleavage fracture at low temperatures within the operating temperature ranges of the NASA sites where these vessels are installed. Additionally, the stress state in critical regions of the LPVs, such as the longitudinal seam welds and circumferential welds, is uncertain due to weld residual stresses (WRS), geometric discontinuities, and stress concentrations in weld connections. In order to guide non-destructive evaluation (NDE) and assessment of the circumferential welds and account for uncertainties in these non-code LPVs, probabilistic critical initial flaw size (CIFS) and critical crack size (CCS) analyses were performed for eleven locations of interest within the head-to-shell and shell-to-shell circumferential welds of three demonstration LPVs.
EXTENDED ABSTRACT

ADVANCED CRACK TIP FIELD QUANTIFICATION USING DIGITAL IMAGE CORRELATION, MACHINE LEARNING, AND INTEGRAL EVALUATION [Keynote]

We use higher-order Williams coefficients from full-field displacement data obtained by digital image
correlation (DIC) to approximate complex crack tip fields with simpler expressions. The methodology is
based on invariant path integrals and machine-learned crack detection. We demonstrate the framework for
fatigue crack growth experiments of aluminium alloys and compare the results to matching finite element
simulations.
EXTENDED ABSTRACT

AN FE-EXPERIMENTAL METHOD FOR DETERMINING QCT-BASED CORTICAL BONE FRACTURE TOUGHNESS AND ULTIMATE STRESS [Keynote]

Cortical bone fracture prediction using Phase Field Models (PFMs) requires the data on the spatial distribution of bone fracture toughness and ultimate stress. However such correlations with qCT parameters or associated bone density are not yet available in the literature. Here, we proposed an FE-Experimental method to determine bone fracture toughness and ultimate stress for different densities and find out potential correlations. Digital Image Correlation (DIC) and diverse standards for KIc calculation show values ranging from 2 to 9 MPa√m. Although it is consistent with reported data in the literature, further work is being conducted using qCT-scans and micro-CT data as well as Finite Element Analysis (FEA) to estimate bone density and determine more accurately the associated fracture toughness and ultimate stress.
EXTENDED ABSTRACT

A PHASE-FIELD MODEL FOR THE MULTISCALE ANALYSIS OF FRACTURE IN SHORT GLASS FIBER REINFORCED POLYMERS [Keynote]

Understanding and modeling the fracture mechanical behavior of short glass fiber reinforced polymers (SFRPs) is challenging: the strong heterogeneity induced by the manufacturing process causes a tight coupling of the material microstructure to the effective response on the component scale. Aiming to account for this microstructural complexity, fracture is approached using a multiscale approach. To resolve the microstructure induced anisotropy and its relationship with the macroscopic material behaviour, an isotropic phase-field fracture model is extended via the fiber orientation interpolation concept. The approach is fed by micromechanical simulations calibrated by experimental data. A validation of the proposed approach is obtained by means of numerical investigations compared to experimental findings.
EXTENDED ABSTRACT

STRONG AND TOUGH FIBROUS HYDROGELS REINFORCED BY MULTISCALE HIERARCHICAL STRUCTURES WITH MULTIMECHANISMS [Keynote]

Tough natural materials such as nacre, bone, and silk exhibit multiscale hierarchical structures where distinct toughening mechanisms occur at each level of the hierarchy, ranging from molecular uncoiling to microscale fibrillar sliding to macroscale crack deflection. An open question is whether and how the multiscale design motifs of natural materials can be translated to the development of next-generation biomimetic hydrogels. Here, we will discuss a recent work [1] on fabricating strong and tough hydrogel with architected multiscale hierarchical structures using a freeze-casting–assisted solution substitution strategy. The underlying multiscale multimechanisms are attributed to the gel’s hierarchical structures; hydrogen bond–enhanced fibers with nanocrystalline domains; and cross-linked strong polyvinyl alcohol chains with chain-connecting ionic bonds. This study establishes a blueprint of structure-performance mechanisms in tough hierarchically structured hydrogels and can inspire advanced design strategies for other promising hierarchical materials.
EXTENDED ABSTRACT