EFFECT OF BOLT PRELOAD ON FRETTING FATIGUE BEHAVIOUR OF DOUBLE LAP BOLTED JOINTS WITH CLASS B SURFACE FINISH IN HIGH-CYCLE FATIGUE: EXPERIMENTAL AND NUMERICAL INVESTIGATION.

Slip-critical bolted connections are prone to developing fretting damage between the contacting surfaces. In this study, the effect of two different bolt preload values, 90 and 145 kN, on the fretting fatigue behaviour of steel double-lap bolted joints with a Class B (shot-blasted) surface under high-cycle fatigue conditions is investigated experimentally and numerically. The experimental results show that increasing the bolt preload decreased the total fretting fatigue life significantly. Moreover, the proposed numerical method was able to predict crack initiation and crack propagation behaviours successfully.
EXTENDED ABSTRACT

ASSESSING UNCERTAINTY IN CREEP LIFE OF GRADE 91 STEEL USING CRYSTAL PLASTICITY AND GRAIN BOUNDARY MICROSTRUCTURAL MODELS

This paper examines time to minimum creep rate and its uncertainty with respect to a set of fourteen material parameters. The microstructural model of Grade 91 steel includes both dislocation creep and grain boundary opening/sliding within a finite element model, and hence the simulations are relatively expensive and have several sources of nonlinearity. We will propagate uncertainty in the input material parameters of these two mechanisms and determine the aggregate uncertainty in the predicted time to minimum creep rate as well as the sensitivities of the parameters. The cost, stability, accuracy of the polynomial chaos expansion as a means for stochastic dimensional reduction is assessed against the classical Monte Carlo method.
EXTENDED ABSTRACT

TOWARDS PRACTICAL SIMULATION OF STEEL FRACTURE IN STRUCTURAL AND EARTHQUAKE ENGINEERING APPLICAITONS [Keynote]

Over twenty-five years ago, unexpected fractures occurred in dozens of welded steel frame buildings during the 1994 Northridge earthquake. This prompted major research programs to (1) develop more reliable connection details for new buildings, (2) develop strategies to repair and retrofit damaged buildings, and (3) to assess the seismic safety of buildings. Efforts to develop alternative designs for new and retrofitted steel connections primarily relied on large-scale laboratory testing of connection subassemblies. Since then, significant advancements have been made in nonlinear finite element techniques to simulate the inelastic behavior of structural components and systems, although challenges remain to reliably simulate fracture, particularly for seismic design, where structural components are designed to undergo large-scale yielding. This presentation will summarize research on continuum-based fracture mechanics, where cyclic void growth models are used to assess ductile fracture initiation and propagation under large scale cyclic yielding. The models are implemented through finite element analyses and validated through a series of tests on notched axial bars, compact tension specimens, and large scale steel subassembly tests of braces and column base connections. Applications to use detailed finite element models to calibrate macro-scale models for incorporating fracture limit states in overall structural system response are also described.
EXTENDED ABSTRACT

MICROVOID CHARACTERISTICS AT FRACTURE IN ASTM A992 STEEL UNDER MONOTONIC AND ULTRA-LOW CYCLE FATIGUE LOADING

Ductile fracture is the fracture initiating mechanism in steel structures subjected to both overloading and ultra-low cycle fatigue (ULCF) loading. This paper aims to characterize the statistical distribution of microvoids on the fracture surface of structural steel specimens subjected to monotonic and ULCF loading by employing advanced microscopy techniques. Furthermore, the relationship between the experimentally inferred mean microvoid size and the state of stress and strain is investigated.
EXTENDED ABSTRACT

DUCTILE FRACTURE OF LOW-YIELD-POINT STEEL UNDER DIFFERENT STRESS STATED

Low-yield-point steel LYP225, distinguished from the ordinary carbon structural steels by lower yield strength, preferable strain-hardening and better ductility, is widely applied in metallic dampers. Ductile fracture of these dampers after severe earthquakes were commonly observed. This paper experimentally investigates the ductile fracture of LYP225 steel under different stress states, and predicts the fracture initiation with the Hosford-Coulomb fracture model.
EXTENDED ABSTRACT

MULTISCALE SIMULATION OF STRUCTURAL WELDMENTS

While sophisticated simulation techniques are regularly applied in natural hazards engineering, they are limited in ability to capture several important failure mechanisms. A significant limitation is the capability to reliably simulate fracture in structural steel weldments. Predicting fracture in weldments is inherently challenging due to various factors. Moreover, when weldments do not have a sharp, pre-existing flaw, or are subjected to large-scale yielding or earthquake-induced Ultra Low Cycle Fatigue (ULCF – characterized by few cycles of large strain) – all of which occur frequently in modern buildings, conventional fracture and fatigue mechanics are invalidated. Given that fracture often initiates in the weld region, this represents a major obstacle to effective structural performance assessment. This is addressed this through a coordinated program of (1) physical tests and fractography on thermomechanically generated samples of various weld microstructures for discovery of fracture micromechanisms, (2) formulation of new continuum-based fracture criteria for these different microstructures, (3) numerical implementation, and (4) calibration and validation of the developed framework using laboratory testing. A key research challenge is to effectively upscale local models, considering spatial variation of microstructure and interaction between mechanisms to predict fracture at the component/structure scale, while also characterizing the uncertainty in these predictions.
EXTENDED ABSTRACT

FATIGUE LIFE ASSESSMENT OF A TRUSS GIRDER BRIDGE USING LINEAR FRACTURE MECHANICS APPROACH

In transportation system, bridges are continuously subjected to vehiclular loads that causes accumulation of stresses in different components. The weakest region are some times prone to the development of fatigue crack, that grows leading to collapse if proper maintenance and reparing are not carried out. In this paper, a method of estimation of fatigue life of a truss girder bridge has been outlined using linear fracture mechanics approach after synthesizing the vehicle induced stress history. Von-Mises stresses which accounts for all the principal stresses at a gusset plate of a critical joint was utilized to obtain stress-cycle histogram. Number of cycles required to grow an initially detected crack of very small dimension to a threshold value has been obtained to predict the fatigue failure. The effect of the length of the bridge, vehicle speed and compound traffic growth on remaining life of the bridge has been studied
EXTENDED ABSTRACT

ENHANCED REAL TIME FATIGUE CRACK MONITORING AND UPDATING IN WELDED STRUCTURAL COMPONENTS

Cracks emerging from geometrically discontinuous locations under cyclic environmental loadings are critical concerns for the safety of the existing structural components. The crack-based fatigue assessment is essential for the evolving digital twin of sustainable infrastructures, including bridges, ships, and offshore platforms, to optimize the lifetime cost of these structures. This study presents an enhanced neural network-bootstrap particle filtering algorithm to construct the complex relationship between the normalized strain relaxation indicators and the crack profiles based on the numerical simulation and experimental validation. The high-cycle fatigue bending test of the welded plate connections confirms the robustness of the proposed approach in estimating the fatigue crack initiation and propagation through both strain measurement and nondestructive testing data. To overcome the uncertainties caused by the limited strain measurement, crack measurement, and different non-destructive techniques, this study combines a bootstrap particle filtering approach with an interpolation method to update the crack prediction algorithm. As validated by the experimental results, the intelligent crack sizing approach demonstrates a potential solution for crack size forecasting through affordable strain gauges in the broad framework of digitally twinning the next-generation infrastructure.
EXTENDED ABSTRACT

EFFECT OF NON-METALLIC INCLUSIONS ON THE FRACTURE TOUGHNESS OF 42CRMO4 STEEL IN THE DUCTILE-BRITTLE TRANSITION RANGE

In this article, the effect of the volume content and distribution of non-metallic inclusions on the fracture toughness of a quenched and tempered 42CrMo4 steel is investigated. The investigations focused on the material behavior in the ductile-brittle transition range. To this end, fracture toughness tests were performed on 42CrMo4 with different inclusion characteristics. These were achieved by metal melt treatment with functional filter materials. The results showed a significant effect of both volume content and distribution of the non-metallic inclusions. The transition to brittle material behavior was accompanied by a decreasing fracture toughness as well as low scatter of the test data.
EXTENDED ABSTRACT

LOW-CYCLE FATIGUE ANALYSIS OF ALUMINUM ALLOY GUSSET JOINTS AND LATTICED SHELL BASED ON CONTINUUM DAMAGE MECHANICS

Aluminum alloys have been widely used for structures in environments subject to corrosion. However, aluminum alloys have lower elastic modulus as compared to steels, and are more sensitive to low-cycle fatigue failure. This study performed low-cycle fatigue experiments of aluminum alloy gusset joints. A damage-coupled cyclic plastic constitutive model of 6061-T6 aluminum alloy was established based on continuum damage mechanics. Numerical simulations of the joints and a latticed shell were carried out incorporating the constitutive model. Low-cycle fatigue life of the joints and the latticed shell structure were estimated based on damage distribution calculated by the simulations.
EXTENDED ABSTRACT