FATIGUE LIFE ASSESSMENT OF A TRUSS GIRDER BRIDGE USING LINEAR FRACTURE MECHANICS APPROACH

In transportation system, bridges are continuously subjected to vehiclular loads that causes accumulation of stresses in different components. The weakest region are some times prone to the development of fatigue crack, that grows leading to collapse if proper maintenance and reparing are not carried out. In this paper, a method of estimation of fatigue life of a truss girder bridge has been outlined using linear fracture mechanics approach after synthesizing the vehicle induced stress history. Von-Mises stresses which accounts for all the principal stresses at a gusset plate of a critical joint was utilized to obtain stress-cycle histogram. Number of cycles required to grow an initially detected crack of very small dimension to a threshold value has been obtained to predict the fatigue failure. The effect of the length of the bridge, vehicle speed and compound traffic growth on remaining life of the bridge has been studied
EXTENDED ABSTRACT

ENHANCED REAL TIME FATIGUE CRACK MONITORING AND UPDATING IN WELDED STRUCTURAL COMPONENTS

Cracks emerging from geometrically discontinuous locations under cyclic environmental loadings are critical concerns for the safety of the existing structural components. The crack-based fatigue assessment is essential for the evolving digital twin of sustainable infrastructures, including bridges, ships, and offshore platforms, to optimize the lifetime cost of these structures. This study presents an enhanced neural network-bootstrap particle filtering algorithm to construct the complex relationship between the normalized strain relaxation indicators and the crack profiles based on the numerical simulation and experimental validation. The high-cycle fatigue bending test of the welded plate connections confirms the robustness of the proposed approach in estimating the fatigue crack initiation and propagation through both strain measurement and nondestructive testing data. To overcome the uncertainties caused by the limited strain measurement, crack measurement, and different non-destructive techniques, this study combines a bootstrap particle filtering approach with an interpolation method to update the crack prediction algorithm. As validated by the experimental results, the intelligent crack sizing approach demonstrates a potential solution for crack size forecasting through affordable strain gauges in the broad framework of digitally twinning the next-generation infrastructure.
EXTENDED ABSTRACT

EFFECT OF NON-METALLIC INCLUSIONS ON THE FRACTURE TOUGHNESS OF 42CRMO4 STEEL IN THE DUCTILE-BRITTLE TRANSITION RANGE

In this article, the effect of the volume content and distribution of non-metallic inclusions on the fracture toughness of a quenched and tempered 42CrMo4 steel is investigated. The investigations focused on the material behavior in the ductile-brittle transition range. To this end, fracture toughness tests were performed on 42CrMo4 with different inclusion characteristics. These were achieved by metal melt treatment with functional filter materials. The results showed a significant effect of both volume content and distribution of the non-metallic inclusions. The transition to brittle material behavior was accompanied by a decreasing fracture toughness as well as low scatter of the test data.
EXTENDED ABSTRACT

LOW-CYCLE FATIGUE ANALYSIS OF ALUMINUM ALLOY GUSSET JOINTS AND LATTICED SHELL BASED ON CONTINUUM DAMAGE MECHANICS

Aluminum alloys have been widely used for structures in environments subject to corrosion. However, aluminum alloys have lower elastic modulus as compared to steels, and are more sensitive to low-cycle fatigue failure. This study performed low-cycle fatigue experiments of aluminum alloy gusset joints. A damage-coupled cyclic plastic constitutive model of 6061-T6 aluminum alloy was established based on continuum damage mechanics. Numerical simulations of the joints and a latticed shell were carried out incorporating the constitutive model. Low-cycle fatigue life of the joints and the latticed shell structure were estimated based on damage distribution calculated by the simulations.
EXTENDED ABSTRACT

MODELLING OF PLASTICITY AND DUCTILE FRACTURE FOR LOW TO MEDIUM INDIAN STRUCTURAL STEEL GRADES

The data points available for developing a Fracture Locus (FL) database for structural steel used in the Indian construction industry are extremely limited. The current study is conducted to determine the FL data points for three different grades of Indian structural steel, namely E250, E350, and E450. Uniaxial tests on notched dog bone specimens of three different specimen configurations are performed. The selected configuration is used to determine points for plotting FL corresponding to high-stress triaxiality (0.7 < T >1) and Lode angle (L) almost equal to 1. With the help of numerical simulation, the FL points are obtained and reported. The accuracy of numerical simulation is checked by precisely matching the load versus displacement obtained from the experiment. Six fracture prediction models are chosen for the present study. These six models are chosen using the following criteria, (1) only depends on stress triaxiality (b) depends on both stress triaxiality and Lode angle and (c) the number of coefficients used. The effectiveness of all the selected models in predicting fracture initiation across all three steel grades is compared, and the findings are reported.
EXTENDED ABSTRACT