OPTIMIZATION AND USE OF HIGH-THROUGHPUT MICROMECHANICAL TESTING DESIGN FOR 3D-PRINTED POLYMERS
Stanislav ZakGrand Ballroom B
Modern materials behave differently on a micro-scale level than in bulk applications. Therefore, with ever present miniaturization, the materials’ testing on a micron-level is gaining importance. 3D printing with a sub micron precision, such as direct laser writing by two-photon lithography, allows for relatively fast manufacturing of miniaturized specimens for micromechanical testing. In combination with precise loading by a nanoindenter tip, high throughput micromechanical testing is enabled. Presented research shows design process of miniaturized cantilever and push to pull device specimens for fracture mechanics testing, aided finite element modelling, together with high throughput testing of polymeric materials with varied printing parameters and loading conditions. Such in situ and ex situ experimental setup allows for systematic fracture mechanics testing on the small scale for common materials used in small-scale 3D printing.
EXTENDED ABSTRACT