NEW MODEL FOR BRITTLE FRACTURE ASSESSMENT UNDER COMBINED STRESS FIELD BASED ON THE LOCAL APPROACH

This study proposes the new fracture model to assess the fracture toughness under complex loading mode subjected to cracked component on the brittle fracture toughness assuming combined stress state in plastic zone near crack-tip. This model newly considers non-linear energy release rate named Local-J as the elastic-plastic local fracture driving force for micro-crack nucleus in plastic zone. The effect of 3-dimentioinal combined stress state on local-J, which is different from the effect on the linear elastic energy release rate for Griffith crack, is formulated as the Local-J equivalent stress by conducting numerical analysis of unit-cell including a penny-shaped crack. Based on weakest link theory assuming this new model under combined stress field, Extended Weibull stress is derived as a new fracture parameter for cracked component. The characteristics of the proposal model is examined by predicting the critical load for pure mode II or III from fracture toughness assumed under pure mode I load. Fracture toughness assessed by this new model under mode II or III load is smaller than that assessed by conventional model. This result of numerical analysis implies the possibility of rational assessment of the effect of loading mode by applying the new model.
EXTENDED ABSTRACT