MODELING OF STRESS CORROSION CRACK INITIATIONS OF POLYETHYLENE PIPE TRANSPORTING CHLORINATED WATER

Stress corrosion cracking is one of the long-term failure mechanism of thermoplastic pipes when exposed to the oxidative agents, such as the chlorinated water. In this paper, the stress corrosion crack initiation model was suggested based on the diffusion of chlorinated water with oxidation, combining with the energy analysis by cracking. The multiple micro cracking, which is a dominant feature in stress corrosion cracking failure, was successfully simulated by the proposed model.
EXTENDED ABSTRACT

MODDELING OF INTERGRANULAR STRESS CORROSION CRACKING MECHANISM THROUGH COUPLING OF SLIP-OXIDATION AND COHESIVE ZONE MODEL

A finite element model was proposed for intergranular stress corrosion cracking modelling (IGSCC). The model is based around a moving integration point formulation which enables the model to track the oxide, dissolution, and crack tip. The formulation is introduced in the cohesive element. The model also relies on an electrochemical model, based on the slip-oxidation model and a diffusion model. The model is dependent on the plastic strain rate and creep strains for oxide rupture to evaluate the effect of creep and plastic strain on crack growth and oxide thickness in IGSCC.
EXTENDED ABSTRACT

INTEGRATED MODELING OF STRESS CORROSION CRACKING IN SUPERALLOYS

The reliability of turbine blades is strongly dependent on the humidity, contamination, stress, and temperature to which they are exposed during operation. In many cases, cracks initiate simultaneously at multiple locations, which can result in crack arrest (shielding) or (coalescence). This presentation will explore an integrated computational and experimental approach that evaluates crack interaction in CMSX-4 superalloy using C-Ring tests with a layer of contaminant salt exposed to 550C. A phase-field model calculates the diffusion of species and reduces the material critical energy release rate accordingly. The model, which is parameterised to enable cracking above a threshold stress, predicts the critical crack spacing that results in shielding or coalescence. In addition, the integration of X-Ray microscopy (XRM) characterisation with FEM modelling demonstrates univocally the role of crack interaction in stress corrosion cracking. We conclude discussing the value of integrating models and experiments to understand complex failure mechanisms.
EXTENDED ABSTRACT