FINITE ELEMENT MODELING FOR PREDICTING OPTIMAL HOLE PROFILE IN A FINITE SQUARE PLATE OF HETEROGENEOUS BRITTLE MATERIAL (WC+CO) UNDER UNIAXIAL COMPRESSION OR UNIAXIAL DISPLACEMENT
Yitzchak YifrachHickory
The objective of this paper is to develop numerical models to predict and optimize the ratio (D/W) of hole diameter D over plate width W of a square plate with a center hole. The plate is made from tungsten carbide. The geometry of the model was a square plate with a circular hole in the center. FEM simulation was performed for hole diameter to plate width ratio from 0 to 0.71 in terms of fracture strength (Sut or Suc) under uniaxial compression, or uniaxial displacement. SCF values in the simulations showed good fit with analytical values.It is shown that maximum normal tensile stress develops at the upper point along the free edge of vertical hole,and maximum compressive stresses at left and right horizontal points along the free edge of the hole.. The numerical solution of the normal tensile stress distrbution on the "future fracture plane in Mode I" guarantees a certain degree of stability in the crack propagation in heterogeneous brittle materials.This stability, caused the compliance of the plate to remain independent of crack length, and hence
the fracture toughness can be measured by the critical load itself. The results are relevant to the design of inserts cutting tools.
EXTENDED ABSTRACT