PROLOCA 7.1 A PROBABILISTIC FRAMEWORK FOR FATIGUE ANALYSIS OF ALUMINUM AND WELD STEEL STRUCTURES [Keynote]

PROLOCA 7.1 is a probabilistic fracture mechanics (PFM) cods developed for the analysis of damage initiation and growth up to the point of structural failure. The PROLOCA (PRObability of Loss Of Coolant Accident) code was formulated to address nuclear piping and was based on past probabilistic analyses of fatigue in aircraft. These methods were integrated into a code, PROLOCA 2.0 originally developed under NRC contract [1], which was developed for nuclear piping analyses. Since that time, PROLOCA was continually improved under contract to an international team of regulators and operators. In this paper we examine some of the key differences between PROLOCA and other frameworks for fatigue analyses. Examples of the application of PROLOCA to dissimilar metal welds and aircraft damage tolerance are given to demonstrate the extremely low risk of failure with and without inspections and leak detection
EXTENDED ABSTRACT

PROBABILISTIC STRUCTURAL INTEGRITY ASSESSMENT OF WELDED JOINTS [Keynote]

The fatigue assessment of welded joints requires several input data, which can be subdivided into three categories: geometry, material and loading. The number of input data depends essentially on the complexity of the models employed and on the level of accuracy of the analysis. It is common practice to use safety factors in design to account for the scatter of the input parameters. Nevertheless, overly-conservative factors lead often to unrealistic estimations of fatigue life. This work presents a fracture mechanics-based model for the structural integrity assessment of welded joints under constant amplitude fatigue loading, in which the local geometry at the weld toe and the fatigue crack growth properties are considered statistically distributed. The approach is validated against a large number of experimental data.
EXTENDED ABSTRACT

APPLICATIONS OF THE EXTREMELY LOW PROBABILITY OF RUPTURE (XLPR) CODE

To analyze the integrity of piping components in nuclear power plants (NPPs), the U.S. Nuclear Regulatory Commission (NRC) Office of Nuclear Regulatory Research and the Electric Power Research Institute jointly developed a probabilistic fracture mechanics computer code. The Extremely Low Probability of Rupture (xLPR) code simulates crack initiation and growth from fatigue and stress corrosion cracking (SCC) degradation mechanisms and other aspects of piping component structural integrity. This presentation provides an overview of the NRC staff’s applications of the xLPR code since its public release in 2020 to assist in risk-informed regulatory evaluations of leak-before-break (LBB) analyses for pressurized water reactor piping systems with dissimilar metal welds susceptible to SCC. Potential use of the xLPR code to estimate loss of coolant accident (LOCA) frequencies and to interface with artificial intelligence machine learning (AI/ML) models are also discussed.
EXTENDED ABSTRACT