INTERMITTENCY IN FATIGUE CRACK GROWTH AND FATIGUE STRIATIONS

The fatigue crack growth rate exhibits apparent self-similarity as it grows as a power of the stress intensity factor (the Paris–Erdogan law). We have studied the fatigue crack growth in two aluminum alloys (Al-1050 and Al-5005) using optical methods and found that the crack tip advances in an intermittent way, characterized by a power-law distribution of crack tip jump sizes. The exponent of the distribution is around two – higher than what is usually observed in avalanching systems – and there is a cutoff that increases with increasing crack velocity. If the generally accepted one-to-one correspondence between the crack tip advancement per cycle and the fatigue striation lines on the fracture surface holds, one should expect a similar distribution for the striation line spacings. We have performed post-mortem fractography using scanning electron microscopy and, by automatically tracking the striation spacings, we indeed see a similar power-law distribution with a cutoff and an exponent around two.
EXTENDED ABSTRACT

TOWARDS HIGH THROUGHPUT FATIGUE CHARACTERIZATION

While the advance of experimental and computer modeling techniques has continued to push mechanistic understanding and predictive modeling capabilities forward, the capability to generate fatigue data has been almost stagnant. Fatigue engineering and research efforts often operate in a data starved modality (considering the highly stochastic nature of fatigue failures). This impedes attempts to effectively use modern machine and statistical learning tools for fatigue performance prediction, both within standard prognosis frameworks, and integrated computational materials engineering (ICME) frameworks.
This presentation will report on our exploration for opportunities to improve the throughput of fatigue testing machines utilizing the expanded design space offered by technological advancement, e.g., computer aided drawing and manufacturing, data acquisition and computer modeling, and robotic automation. Following our review, we will present two concepts for uniaxial high throughput fatigue testing, with the goal of improving fatigue throughput by ~100x while conforming to popular test standards. Our progress towards this goal, and ultimately the prospects for achieving it, will be presented by sharing the results of multiple design-build-test iterations.
EXTENDED ABSTRACT

APPLICATIONS OF THE EXTREMELY LOW PROBABILITY OF RUPTURE (XLPR) CODE

To analyze the integrity of piping components in nuclear power plants (NPPs), the U.S. Nuclear Regulatory Commission (NRC) Office of Nuclear Regulatory Research and the Electric Power Research Institute jointly developed a probabilistic fracture mechanics computer code. The Extremely Low Probability of Rupture (xLPR) code simulates crack initiation and growth from fatigue and stress corrosion cracking (SCC) degradation mechanisms and other aspects of piping component structural integrity. This presentation provides an overview of the NRC staff’s applications of the xLPR code since its public release in 2020 to assist in risk-informed regulatory evaluations of leak-before-break (LBB) analyses for pressurized water reactor piping systems with dissimilar metal welds susceptible to SCC. Potential use of the xLPR code to estimate loss of coolant accident (LOCA) frequencies and to interface with artificial intelligence machine learning (AI/ML) models are also discussed.
EXTENDED ABSTRACT