Maraging steels are a class of precipitation hardened steels wherein different micro-mechanisms of deformation such as planar slip, interaction with coherent/incoherent precipitates, and reverted austenite affecct the overall mechanical behavior of the material. High-pressure-torsion (HPT) processing introduces a large density of dislocations that form sub-grain boundaries within the refined nano-scale structure, leading to changes in precipitate morphology compared to hot-rolled maraging steels. The impact of such nanostructuring on the deformation and fracture micro-mechanisms is being reported for the first time using in-situ characterization techniques along with transmission electron microscopy and atom probe tomography analysis, in this study. Digital image correlation has been used to quantify the full field strain maps in regions of severe strain localization as well as to determine the fracture toughness through critical crack tip opening displacements.
EXTENDED ABSTRACT
Themes: Ductile Fracture Under Complex Loading
DUCTILE FRACTURE OF SS-304L MICROTUBE UNDER COMBINED AXIAL FORCE AND INTERNAL PRESSURE
The fracture behavior of the stainless-steel SS-304L is assessed by loading microtubes of 2.38 mm diameter under combined axial force and internal pressure, using a custom apparatus. The force/pressure ratio is controlled in the experiments, to generate different biaxial stress paths that are proportional or nearly proportional. The results from the experiments are used to calibrate the non-quadratic anisotropic yield function Yld2004-3D. Then, finite element (FE) models of the microtubes are created after incorporating the anisotropic material modeling framework, and compared with the experiments to establish their fidelity. The FE models are then used to probe the fracture behavior under the proportional loading. The failure modes of the microtubes are different depending on the stress state being axial- or hoop-stress-dominant. It is found that the structural instabilities that precede necking are different and appear at different levels of strain. The strains at the onset of fracture, as determined by probing the FE model, reveal significant fracture anisotropy, that can be possibly also attributed to the specimen geometry, beyond the material processing.
EXTENDED ABSTRACT
MODELING OF THE ELASTO-PLASTIC BEHAVIOR OF HSLA X140 STEEL: EFFECT OF PRE-STRAIN AND TRIAXIALITY
In this work, a comprehensive experimental campaign is conducted to investigate the effect of pre-strain on the mechanical properties of X140 steel used in high performance threaded connections. Mechanical tests are used to characterize the plastic and fracture behavior of the material. Smooth tensile (ST), notched tensile (NT), plane strain (PE) and shear tests (STC) were performed. Cyclic tension-compression tests are used to characterize kinematic hardening. Initially qualified as isotropic, this material showed an anisotropic behavior after undergoing a pre-strain expansion as its plastic flow becomes loading direction dependent. This pre-strain effect is well reproduced using a phenomenological modeling combining isotropic and kinematic hardening contributions with a Hosford’s criterion.
EXTENDED ABSTRACT
MICRO-STRUCTURAL DAMAGE ANALYSIS FOR PREDICTING THE EFFECT OF LOADING PATH ON DUCTILITY OF TWO-PHASE STEELS
The purpose of this study is to predict the effect of loading path on ductility of two-phase steels based on micro-structural damage analyses. A micro-structural damage model that consists of 3D micro-structural FE-model and ductile damage model is proposed. Isotropic / kinematic hardening model is introduced for considering the mechanical behavior of Bauschinger effect. The effective damage concept for considering micro-scopic behavior of Bauschinger effect which is dislocation behavior in loading path change is introduced into the damage model. Two types of ferrite-pearlite two-phase steels with different volume fraction of pearlite, and ferrite and pearlite single-phase steels are used. Tensile tests using micro-tensile specimen extracted orthogonal to pre-strained direction from tensile pre-strained round-bar specimens are conducted. Ductility is increased due to loading path change, and the effect is greater in the case of higher volume fraction of pearlite. The mechanism of the effect is analyzed by numerical simulation based on the proposed micro-structural damage model. It is presented that the improvement of ductility by loading path change is caused by micro-structural heterogeneity, delay of necking due to mechanical behavior of Bauschinger effect, and non-effective plastic strain for damage evolution due to micro-scopic behavior of Bauschinger effect.
EXTENDED ABSTRACT
PREDICTING DUCTILE FRACTURE FOR MIXED MODE OF LOADING USING THE MODIFIED MOHR-COULOMB CRITERION
Reliable and robust fracture prediction tools are necessary for designing and analyzing critical engineering structures. This paper uses a phenomenological damage model to study the fracture response of a pressure vessel steel under complex loading conditions. Details of the experiments and numerical procedures are provided for calibrating and validating the proposed framework for predicting ductile fracture.
EXTENDED ABSTRACT
COUPLED CRYSTAL PLASTICITY PHASE-FIELD MODEL FOR DUCTILE FRACTURE IN POLYCRYSTALLINE MICROSTRUCTURES
A wavelet-enriched adaptive hierarchical, coupled crystal plasticity – phase-field finite element model is developed in this work to simulate crack propagation in complex polycrystalline microstructures. The model accommodates initial material anisotropy and crack tension-compression asymmetry through orthogonal decomposition of stored elastic strain energy into tensile and compressive counterparts. The crack evolution is driven by stored elastic and defect energies, resulting from slip and hardening of crystallographic slips systems. A FE model is used to simulate the fracture process in a statistically equivalent representative volume element reconstructed from electron backscattered diffraction scans of experimental microstructures. Multiple numerical simulations with the model exhibits microstructurally sensitive crack propagation characteristics.
EXTENDED ABSTRACT
A UNIFIED NONLINEAR XFEM-CZM BASED METHODOLOGY TO DEAL WITH DUCTILE FRACTURE
The numerical treatment of the whole process of ductile fracture remains a challenging task, particularly when FEM is employed. The main issue regards pathologically mesh dependence of the numerical results, not only in the softening regime but also in the stages of strain localization and further crack propagation. In the literature, non-local approaches are adopted to mitigate these effects but they require a calibrated length scale and mesh refinement, thus being time consuming. This work focuses on the numerical treatment of ductile fracture in metal materials via a three-dimensional unified methodology that combines (i) the GTN model to describe diffuse damage using the standard FEM, the (ii) XFEM to represent the crack and (iii) the coupling of the XFEM with a cohesive zone model to account for the intermediate localization phase. We rely upon the Updated Lagrangian formulation to include large strains and rotations. The methodology, implemented in Abaqus commercial code as a user finite element (UEL), is capable of reproducing numerically the overall response of structures until rupture.
EXTENDED ABSTRACT
VOID SIZE, SHAPE, AND ORIENTATION EFFECTS UNDER INTENSE SHEARING ACROSS SCALES
The present work demonstrates how gradient strengthening at the micron scale affects the macroscopic strain at coalescence under intense shearing conditions. The coalescence mechanism relies on severe flattening, rotation, and elongation of the voids causing severe heterogeneous plastic strain to develop near the voids and in the ligament between voids. These gradients are associated with geometrically necessary dislocations, causing a delay in the coalescence process.
EXTENDED ABSTRACT
ANALYSES OF DUCTILE FRACTURE USING HUNNY THEORY
We present a theory with a structure that enables analyses of ductile fracture under any type of loading. The theory builds on the standard concept of homogeneous yielding and further proceeds from the concept of unhomogeneous yielding on a (yield) system that depends on the spatial distribution of voids. Depending on the desired level of refinement in analysis, a given simulation employs one or more yield systems with the isotropic limit being reached for an infinite number. We illustrate the predictive capabilities of the theory by considering simulations of three-dimensional crack initiation and growth in a round notched bar, a shear specimen and a compression pin.
EXTENDED ABSTRACT
1-TO-1 COMPARISON OF SEM-DIC TO CP STRAIN FIELDS OF ULTRATHIN STEEL FILMS TO UNRAVEL PLASTICITY TO DAMAGE INITIATION
In advanced high strength steels, crack propagation and fracture is preceeded by damage initiation and propagation, yet, the nature of the plasticity mechanisms leading to damage are debated. To fully unravel the plasticity-to-damage mechanisms, we present a novel integrated experimental-numerical nanomechanical framework for testing ultra-thin specimens, yielding (i) full 3D reconstruction of grain/phase shapes and orientations, (ii) front&rear-sided, high-resolution, microstructure-correlated SEM-DIC strain fields, and (iii) one-to-one comparison to numerical strain fields computed with (advanced) crytal plasticity. Results on martensite ‘bridges’ show that limited plasticity results in martensite damage whereas significant plasticity prevents damage; analysis reveals the key role of ‘substructure boundary sliding’ in martensite on damage initiation.
EXTENDED ABSTRACT