POLYMERIC MATERIALS TOUGHNESS MEASUREMENT BY STATISTICAL FRACTOGRAPHY

Parts made of polymers play an ever increasing role in many different industries (i.e. aerospace, medical, automobile, etc…), which are attracted by their very interesting material properties. Therefore, there is a need to understand why and how these parts fail to prevent incidents, reduce cost, and move toward a more sustainable approach to the dimensioning of structures made of this type of material. Here, we seek to apply the statistical fractography method to polymers to achieve this goal. This quantitative approach of the field is based on a deep understanding of the non-linear damage mechanisms at play at the crack tip during propagation, and that is expressed through a model used to bridge the measured fracture surface’s roughness and the fracture properties of the material, such as its toughness Kc. We show that our fractographic approach provides reasonable estimate of the fracture toughness, paving the way for the application of statistical fractography to the failure analysis of polymeric parts.
EXTENDED ABSTRACT