MECHANICAL MODEL OF SLIDING FRICTION AND THE STUDY OF THE ONSET OF SLIDING FRICTION

Friction widely exists in our daily life and nature, and the onset of sliding friction plays an important role. However, the underlying physical mechanism of this dynamic process is still unclear. This paper will further explore the physical nature of crack like defects. We reduce the experimental configuration to a slider-substrate model, where the slider can be described using thin long beams and the substrate is considered as an elastic half-space. In this way, the relevant displacement and stress field solutions can be obtained by solving Cauchy singular integral equations. The numerical results can well describe the experimental results. By introducing a critical criterion for static dislocation nucleation, the calculated critical forces are in good agreement with those of the sliding precursor. Based on the model, the dynamics of the sliding precursor is further considered. It is found that the strain field caused by the moving dislocation is in good agreement with the strain field caused by the defect in the experiment, and the transient emission process of the interface edge dislocation is similar to the spatio-temporal dynamic behavior observed in the experiment. These works may contribute to further understanding of the mechanism related to sliding friction processes.
EXTENDED ABSTRACT