FRAUCTURE MECHANICS-BASED PROBABLISTIC STRUCTURAL INTEGRITY ASSESSMENT FOR AERO-ENGINE TURBINE DISK

Aero-engine turbine disks are safety-relevant components which are operated under high thermal and mechanical stress conditions. The aim of this work is to present part of a fracture mechanics-based probabilistic assessment procedure under development which aims at calculating the critical rotational speed of the turbine disk based on the numerical-analytical solutions and regulations for the failure probability. In particular, the rim-peeling failure mode is considered as case study. A semi-circular surface crack is modelled at the most stressed region at the diaphragm of a turbine disk. In order to design a lab representative specimen, beside the crack driving force, expressed in terms of J-integral, also the constraint to plastic deformation e.g., stress triaxiality, at the crack-tip must be similar for the same crack in the specimen and in the disk. The analytical solutions to calculate the crack driving force for the lab representative specimen are used for the Monte Carlo simulations, the result of which has been assessed in the form of a Failure Assessment Diagram (FAD). The results of the probabilistic structural integrity assessment show good agreement between Monte Carlo simulations and certification values for the disk in terms of expected failure mode and value of the critical speed.
EXTENDED ABSTRACT