NON-FOURIER HEAT CONDUCTION AND NONLOCAL THEORY, RECENT PROGRESS AND APPLICATION IN THERMAL FRACTURE ANALYSIS [Keynote]

Non-Fourier heat conduction theories have recently been introduced to thermal stress analysis to account for the wave-like behavior of heat conduction under extreme thermal environments, such as high temperature gradient, extremely low temperature, or heat transport in heterogenous microstructures. When considering the highly localized heating process in laser manufacturing, nonlocal heat conduction needs to be included in the heat conduction equation. Combined non-Fourier, nonlocal thermoelastic theories revealed new phenomena in thermal stress analysis of cracked structures. This presentation summarizes some recent progress in thermal fracture analysis using nonlocal, non-Fourier thermoelastic theories.
EXTENDED ABSTRACT