A VERSATILE PHASE-FIELD FRACTURE MODEL FOR POLYMER COMPOSITES: CAPTURING THEIR MULTI-FACETED FRACTURE BEHAVIOR VIA GRADED INTERPHASES

Accurate modeling of fracture in polymer nano-composites entails the consideration of numerous complex phenomena including the branching and coalescence of multiple cracks. This contribution employs a graded interphase enhanced phase-field fracture approach (PFF-GI) to capture a wide spectrum of experimentally observed fracture behaviors including particle debonding. Herein the overall fracture response of the composite material is controlled via the degree of grading, i.e. continuous variation in material properties, within an interphase region of finite thickness around the filler particle.
EXTENDED ABSTRACT