UNRAVELING THE INTERMITTENCY OF DAMAGE EVOLUTION FOR PREDICTING THE FAILURE OF QUASI-BRITTLE SOLIDS

We study the intermittent damage evolution preceding compressive failure using a non-local damage model accounting for material disorder and long-range elastic interactions. Our theoretical predictions are successfully compared with experiments carried on a model elasto-damageable 2D solid where damage evolution is tracked at both the global and local scale. Finally, we show how our understanding of these failure precursors can be harnessed for predicting the remaining lifetime of structures under compression.
EXTENDED ABSTRACT