COMPETITION BETWEEN INTERGRANULAR AND TRANSGRANULAR FAILURE IN ALUMINUM ALLOY: EXPERIMENTS AND CRYSTAL PLASTICITY MODELING

Aluminum alloys commonly used in airframe structures have been observed to show orthotropy in fracture when processed through hot rolling or extrusion, while other properties such as yield are more isotropic. Fracture orthotropy is likely due to a competition between damage accumulation within the grains by void growth and cleavage along the grain boundaries. Analysis of the fracture surface indicates varying degrees of dimpled regions (indicating damage by void growth) and quasi-brittle flat regions coinciding with the grain boundary (indicating grain boundary failure). To help determine structure-property relations in such materials, this paper describes a computational model for fracture in ductile polycrystals accounting for both the damage mechanisms. The model is validated by comparing with experiments on a high strength aluminum alloy, AA2139.
EXTENDED ABSTRACT