PERIDYNAMIC MODELING OF DYNAMIC FRACTURE OF B4C IN A SPLIT-HOPKINSON PRESSURE BAR

The dynamic fracture of a brittle ceramic, B4C, is investigated using our in-house split-Hopkinson pressure bar (SHPB), and Sandia’s peridynamics simulation code, PERIDIGM. In order to study the dynamics of this particular SHPB, the initial boundary value problem (IBVP) is solved for a 1-D impact in which a finite striker bar collides with the front face of a stationary incident bar bonded to a specimen of finite thickness, with the back face of the specimen bonded to another finite transmission bar; this is the classic SHPB experiment. Laplace transform domain solutions are numerically inverted to the time domain using a modified Dubner-Abate-Crump algorithm. The new IBVP solutions for particle velocity in the SHPB composed of maraging steel bars, and B4C specimen, are used to verify the commercial FE codes COMSOL and ABAQUS, and PERIDIGM. Subscale SHPB simulations are conducted using PERIDIGM on jacketed/unjacketed B4C specimens with a critical stretch failure condition proportional to the ceramic’s critical energy release rate, Gc; also investigated is the effect of initial defect populations governed by, Weibull, uniform random, and Bobaru critical stretch distributions, on the ceramic failure behavior. Computationally expensive full-scale PERIDIGM simulations are also currently underway to compare with the subscale simulation results.
EXTENDED ABSTRACT