MACRO CLEAVAGE ENERGY TO MICRO BOND BREAKING MECHANISMS- SHORTER IS TOUGHER

Fracture of brittle solids is ultimately executed by atomistic-scale, discrete, and ultrafast bond-breaking mechanisms along the crack path. Here, we show new fracture behavior and properties of brittle materials, based on macroscopic fracture cleavage experiments of silicon crystal specimens and atomistic-scale semi-empirical model for bond-breaking mechanisms along the curved crack front, to relate micro to macro in fracture.
EXTENDED ABSTRACT