EFFECT OF HPT PROCESSING ON FRACTURE BEHAVIOUR OF MARAGING STEELS

Maraging steels are a class of precipitation hardened steels wherein different micro-mechanisms of deformation such as planar slip, interaction with coherent/incoherent precipitates, and reverted austenite affecct the overall mechanical behavior of the material. High-pressure-torsion (HPT) processing introduces a large density of dislocations that form sub-grain boundaries within the refined nano-scale structure, leading to changes in precipitate morphology compared to hot-rolled maraging steels. The impact of such nanostructuring on the deformation and fracture micro-mechanisms is being reported for the first time using in-situ characterization techniques along with transmission electron microscopy and atom probe tomography analysis, in this study. Digital image correlation has been used to quantify the full field strain maps in regions of severe strain localization as well as to determine the fracture toughness through critical crack tip opening displacements.
EXTENDED ABSTRACT