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Abstract 
In recent years, the Finite Fracture Mechanics approach, originally proposed by Leguillon in 2002, has been 
applied successfully to several material and geometrical configurations. However, up to now, most of the 
applications were restricted to two-dimensional geometries. In the present paper, we provide an insight to 
a simple yet challenging three-dimensional case, namely the flat elliptical crack. Results are provided in 
analytical form.  

1. Introduction 
Finite Fracture Mechanics (FFM) relies on the assumption that cracks, at least at onset, grow in a finite, 
discrete way, i.e. by crack steps [1]. FFM has proven to be an effective fracture criterion for predicting 
applied stresses causing/producing/originating the crack onset in 2D geometries. Some attempts have been 
done to extend the criterion to 3D geometries [2,3]. The main difficulty lies in the fact that the failure stress 
depends not only on the size of the crack step, but also on its shape. Under mode I loading conditions, the 
dependence on the shape has no effect in 2D geometries while it has in 3D. 

2. Results 
In the present paper, we focus the analysis to flat elliptical cracks under uniform remote stresses normal to 
the crack plane (Fig.1a). Note that the problem can be seen as a straightforward generalization of the penny 
shaped crack geometry recently faced by FFM in [4], but here the radial symmetry does not hold any more. 

Onto the crack plane (x,y) only the normal stress component z is acting. Its value over the whole crack 
plane can be derived from the complete solution by Green & Sneddon [5]. It reads as: 
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where a and b are respectively the major and minor semi-axes of the ellipse describing the crack, k is the 
eccentricity,  is the remote applied stress, E() is the incomplete elliptical integral of the second kind 
and E() is its complete counterpart;  is an ellipsoidal coordinate whose relationship with the cartesian 
coordinates (x,y) on the z = 0 plane is: 
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Because of the applied remote stress, the elliptical crack opens, taking the shape of an ellipsoid whose 
semiaxes are a,b and wmax. The third one, representing half of the crack opening at the crack centre, is: 
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E being the material Young’s modulus in plane strain conditions. Based on Eqs. (1), (2) and (3), we can 
apply LEFM assuming an infinitesimal crack extension of (any) elliptical shape. A reasonable assumption 
is to assume an iso-stress crack increment. It can be shown that such an assumption is tantamount assuming 
a crack increment orthogonal to the crack front proportional to the square of the SIF acting at that point or, 
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equivalently, assuming that the equivalent SERR (i.e. the SERR value to be compared with the fracture 
energy to have crack growth) is the contraharmonic mean of the SERR values along the whole crack front. 
However, an infinitesimal crack growth where only the minor axis is growing always provides the 
maximum energy release and, thus, it is preferential from the LEFM point of view. 

Analogous analysis can be performed by means of the FFM approach. In this case, however, results are 
different: it always exist a threshold crack size below which the iso-stress (now finite) crack extension is 
preferential since, coupled with the stress requirement for crack onset, it occurs at a lower remote stress 
value. This threshold value depends on the ellipse eccentricity and on Irwin’s length, so that we can 
conclude that minor-axis crack growth will take place for high eccentricities, large crack sizes and highly 
brittle materials, while iso-stress crack growth will prevail for low eccentricities, small crack sizes and not 
so brittle materials, see Fig. 1b. 

 

 

 

 

 

 

 

 

 

 

  

 

Fig.1 – Flat elliptical crack (a) and strength size effect (b) for b/a = 0.5; A is the finite crack extension, 
f is the failure remote stress, c is the material tensile strength,  = b / lch the dimensionless crack size. 

3. Conclusions 
The flat elliptical crack under mode I loading conditions have been faced by LEFM and FFM. FFM always 
provides lower values, so that uncritical application of LEFM can lead to unsafe design. 
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