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Abstract 

In this work we show how a machine learning algorithm based on a Bayesian optimization framework can 

be used in conjunction with finite element analysis to autonomously select parameter values for a ductile 

damage model representative of experimental test data. 

1. Introduction 

Ductile damage is a common failure mechanism for engineering alloys, typically involving micro-void 

initiation, growth and coalesence1. Finite element analysis can successfully model ductile damage using 

analytical material models such as the Gurson-Tvergaard-Needleman (GTN) model1 (The yield surface for 

the Gurson model is provided in Equation 1; additional equations define void initiation and final failure).  
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where q is equivalent (von Mises), p is hydrostatic stress, y is yield stress, f is void volume fraction and 

q1, q2 and q3 are material parameters. The GTN model requires parameter values, selected by the user (e.g. 

q1, q2 and q3), to accurately predict the behaviour of experimental test data. However, selecting the 

appropriate parameter values is an iterative, time-consuming task subject to errors. Machine learning 

techniques offer solutions to solving such complex, multi-interaction engineering challenges. In this work 

Bayesian optimization, a machine learning algorithm that uses probabilistic methods, identifies parameter 

values likely to minimize the error between the experiment and simulated data based on a limited initial 

dataset. The algorithm iteratively selects new parameters and, using the commercial finite element code, 

Abaqus 20212 explicit solver, performs a new simulation. In this work we show the algorithm successfully 

applied to analysis of tensile test data for a martensitic steel (P91).  

2. Results 

Figure 1 shows results for P91 material tested at 20 °C. The error is measured in terms of mean absolute 

percentage error (MAPE), indicating the difference between the simulated Abaqus result and the 

experimental data over the range of the test data. Here we see that the Bayesian optimization algorithm 

successfully found GTN parameter permutations that are excellent approximations of the experimental data 

after 110 attempts (MAPE ≈ 2%).   

3. Conclusions 

• Bayesian optimization successfully selected parameters for the GTN model for three tensile test 

results. In most cases the optimized parameters provided an excellent fit when compared to 

experimental damage.  



15th International Conference on Fracture (ICF15) 

June 11-16, 2023 Atlanta, GA USA 

 

2 

 

• The model has been successfully deployed to several experimental test results conducted at various 

test temperatures.  
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Figure 1 Comparison of experimental data with three Bayesian optimization results for P91 material at test 

temperature of 20 °C. 

 


