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Abstract 
The ability to rapidly predict the growth behavior of microstructurally small cracks (MSCs) has the potential 
to significantly advance fracture-based designs and structural prognosis. The difficulties associated with 
characterizing or predicting MSC growth using experimental and numerical techniques preclude the 
applicability of such techniques in industrial design approaches, despite their potential benefits. Here, we 
propose a framework to accelerate high-fidelity MSC growth predictions using deep-learning algorithms, 
viz., convolutional neural networks (CNNs). The primary research aim is to train CNNs to predict the rules 
governing MSC growth and to subsequently apply the trained CNNs to make rapid forward predictions of 
local crack extension given microstructural neighborhood information along a crack front. The training data 
are acquired from a large number of “virtual” MSC growth observations enabled by high-fidelity finite-
element-based simulations. The MSC-growth-simulation framework, data-extraction strategies, and 
application of deep-learning algorithms for data-driven model development will be presented, and the 
resulting advantages will be demonstrated. 

1. Introduction 
Microstructurally small cracks (MSCs) are cracks whose sizes are on the order of the size of predominant 
microstructural features. Because MSCs are heavily influenced by local microstructural features, 
traditional, continuum-scale fracture-mechanics theories that assume homogeneous, isotropic material 
conditions fail to make reasonable predictions for MSC growth behavior. Early works suggest that fatigue 
cracks can spend 50-70% of their lifetime in the MSC regime. This means that understanding MSCs and 
being able to predict their growth could enhance materials design, improve residual life estimation, and 
allow for reduced safety factors. Motivated by this fact, there have been many studies that have aimed to 
understand MSC behavior.  

Though a number of research studies have investigated the mechanisms governing MSC growth, their 
results have not been utilized in the industrial design processes. This is primarily due to the challenge 
associated with the collection of MSC growth data via either experiments or simulations at the 
microstructural length scale. Experimental techniques, such as electron backscatter diffraction, X-ray 
tomography, and high-energy X-ray diffraction microscopy, have proven to be extremely valuable in 
uncovering MSC growth rules. While they provide invaluable information, they are expensive, time-
consuming, and require sophisticated equipment. Mesoscale microstructure-sensitive modeling poses a 
viable alternative solution to predict MSC growth. Crystal-plasticity-based finite-element (CPFE) models, 
can be used to evaluate the micromechanical state around a crack tip and thereby aid in predicting crack 
growth parameters. Though they provide satisfactory results, CPFE simulations are computationally 
expensive and require massive computing resources for realistic, three-dimensional polycrystals. A fast and 
reliable way of predicting the MSC growth parameters essential for industrial design practices is currently 
impossible using state-of-the-art experimental and numerical techniques.  

In this work, we propose a framework to accelerate MSC growth predictions using deep learning 
algorithms, viz., convolutional neural networks (CNNs). Using a unique data sampling strategy (as 
illustrated in Fig.1b), the training data are acquired from high-fidelity, CPFE-based simulations that use a 
crystal plasticity constitutive model and a voxel-based remeshing framework for simulating crack growth 
(as shown in Fig.1a) in a large number of polycrystalline microstructures. The collected data are used to 
train a CNN model (Fig.1d) to predict MSC growth parameters, including the local crack extension, ∆𝑎𝑎. 

2. Results 
Results from training and testing CNNs to predict ∆𝑎𝑎 are summarized as follows: 
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a. A feature sensitivity analysis was performed to assess the importance of individual features in predicting 
MSC growth characteristics by training CNNs with input features one at a time. Features such as 
quaternions, directional elastic modulus, and micromechanical Taylor factor were found to be more 
influential than geometric features such as crack size and distance to the crack front from free surfaces. 

b. A study to determine the minimum amount of data required for training CNNs was conducted, where 
multiple CNNs were trained with progressively increasing amounts of training data. Result showed that 
with increasing amount of training data, the performance variability among cross-validation runs tended 
to decrease while the average performance among cross-validation runs tended to increase. The results 
suggested that beyond 30 microstructural instantiations (approximately 6000 total data points across 60 
discretized crack fronts), the model performance tended to saturate. 

c. The change in crack tip displacement (∆𝐶𝐶𝐶𝐶𝐶𝐶), which is a measure of the crack driving force, exhibits 
distinct variations along the crack front because of the presence of microstructure. The CNN predictions 
of ∆𝑎𝑎, which is a linear function of ∆𝐶𝐶𝐶𝐶𝐶𝐶, are shown to capture those variations (Fig.1c) and thereby 
suggest that CNNs, indeed, learn the microstructure-sensitive behavior of MSCs. 

d. Once trained, the CNNs take <30 seconds (on GTX1070 GPU) to predict ∆𝑎𝑎 along the crack front in an 
entirely new microstructural instantiation; whereas, evaluating ∆𝑎𝑎 values by running high-fidelity 
simulation takes about 2304 CPU hours on average. The proposed approach enables rapid prediction of 
∆𝑎𝑎, which, in conjunction with other MSC growth parameter predictions, could potentially benefit 
materials design and optimization. 

 

Fig.1 – a) High-fidelity simulation domain with an initial half-penny crack. b) Sampling grids along crack 
front are used for data extraction. c) Comparison of CNN predicted ∆𝑎𝑎 with the simulation result along 

the crack front d) CNN architecture used to train and make forward predictions of ∆𝑎𝑎𝑗𝑗.  

3. Conclusions 
Sampling data from a large number of CPFE-based MSC growth simulations resulted in a dataset containing 
many “virtual” ∆𝑎𝑎 observations. Results suggested that CNNs can learn the microstructure-sensitive 
behavior of MSCs and make reasonable predictions for ∆𝑎𝑎. The trained CNN models predicted ∆𝑎𝑎 several 
orders of magnitude faster than the high-fidelity simulations. 

Acknowledgements 
This work is supported by the NSF CAREER grant No. 1752400. We greatly acknowledge the computing 
resources provided by the Center for High-Performance Computing (CHPC) at the University of Utah.  


