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Abstract 
Ductile cracks which form in steel components of civil structures due to ultra-low cycle fatigue may display 
significant growth prior to component failure. A computational framework was developed to simulate the 
growth of ductile cracks in structural steel utilizing the WARP3D platform. The basic model formulation 
is presented, followed by selected results from a small-scale experimental testing program. Results of 
simulations utilizing the proposed framework demonstrate good agreement with the experimental results.  

1. Introduction 
Over the past several decades, micromechanics-based continuum rupture criteria have been developed 
which can predict the initiation of ductile cracks in steel structures under to complex loading conditions, 
including ultra-low cycle fatigue. The use of continuum-based rupture criteria is essential because modern 
steel structures are designed and detailed to mitigate sharp cracks, and may experience widespread yielding 
and cyclic loading. These conditions violate the restrictions of conventional fracture mechanics (KI, JI, 
CTOD) indices. 

In large-scale experimental tests of structural steel components under cyclic loading, it has been observed 
that after a ductile crack initiates due to ultra-low cycle fatigue, considerable propagation of the ductile 
crack (up to 15 mm) may occur prior to component failure. Therefore, in order to accurately characterize 
component behavior under extreme loads, there is a need to develop computational methods which can 
simulate this ductile crack propagation. 

2. Framework 
The proposed computational framework utilizes cohesive interface elements to simulate crack propagation 
within a continuum finite element setting. Conventional application of cohesive elements requires 
prescribing the governing traction-separation relationship (TSR) a priori, where the peak cohesive traction 
effectively serves as the rupture criterion. However, in steel structures subjected to ultra-low cycle fatigue, 
fracture initiates due to a combination of stress state, plastic strain and loading history, which is reflected 
in continuum rupture criteria. Therefore, in this framework the continuum rupture criterion is integrated 
into the cohesive zone model, and is used to inform the governing traction-separation relationship.  

An overview of the framework is shown in Fig 1. Cohesive elements are inserted along the anticipated 
crack plane. In each of the surrounding continuum elements, the continuum rupture criterion is calculated. 
Once the rupture criterion is satisfied in the neighboring continuum elements, the cohesive TSR is 
established, based on the current value of traction carried in the cohesive element. Constitutive rules 
governing the post-initiation response are specified which allow for modeling of crack propagation under 
both monotonic and cyclic loading conditions. 

The following features of WARP3D were leveraged to implement this framework for simulating ductile 
crack propagation: 

• Nonlocal capabilities: Material state variables from continuum elements were accessible 
to adjacent cohesive elements, which allowed for adaptive updating of the cohesive TSR 
based on the nearby continuum. 



15th International Conference on Fracture (ICF15) 
June 11-16, 2023 Atlanta, GA USA 

 

2 
 

• UMAT interface: Taking advantage of recent developments in modeling the constitutive 
response of steel under cyclic loading, user materials were obtained from the structural 
steel research community in the form of UMAT files, which were integrated into analyses 
using WARP3D. 

• Domain integral calculation: The procedures to calculate J provided in WARP3D were 
utilized to develop simulated J-R curves for sharp-cracked compact tension specimens, 
which were then compared to experimental data. 

 
Figure 1. Overview of computational framework (a) schematic of interface cohesive elements, (b) 

cohesive TSR under monotonic loading and (c) cohesive TSR under cyclic loading 

3. Results Summary 
An experimental program consisting of 44 specimens was completed to provide data for calibration of the 
model parameters and for model validation. Specimens tested include Cylindrical Notched Tension bars, 
Sharp-Cracked Compact Tension specimens and Blunt Notch Compact Tension specimens. The 
experimental program was designed to span a range of stress states and crack front conditions, and 
specimens were tested under both monotonic tension and reversed cyclic loading conditions. Results from 
selected experiments are presented in Fig. 2. In Fig. 2(a), experimental J-R curves are compared to the 
simulated J-R curve obtained using the proposed framework. In Fig. 2(b), the overall force-deformation 
response of a Blunt Notch Compact Tension specimen subjected to cyclic loading is presented. In both 
cases, a good match may be observed between the simulation and the experiments. 

 
Figure 2. Comparison of experimental and simulated results (a) Sharp-Cracked Compact Tension 

Specimen and (b) Blunt Notch Compact Tension Specimen 
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